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Abstract 
Today’s vehicle navigation systems have limited ability to predict. The lack of coordination among 

different shippers and of information on the transport network make it difficult to predict changes in the 

transportation networks due to upcoming loads. The need for an intelligent freight assignment system 

becomes more urgent with the surge of technology development in battery electric trucks and 

platooning techniques. In this project, we developed a load balancing mixed freight coordinated 

assignment system with the inclusion of diesel and electric trucks on realistic road networks aiming for 

the optimal total combined cost of energy consumption and time. A Co-Simulation Optimization method 

is proposed to solve the problem. A distributed version of the Co-Simulation Optimization method is 

proposed to address the complexities induced from scaling the road network. Platooning techniques are 

also implemented in the optimal assignment procedure and analyzed in this project. The coordinated 

truck assignment system considering the characteristics of mixed freight fleets can reduce the 

operational cost and encourage the deployment of electric trucks in order to reduce emissions and 

improve air quality.   
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Research Report  

Executive Summary 
Today’s vehicle navigation systems have limited ability to predict.  For example, when many 
vehicles with similar origins and destinations are routed on what appears at the time as a 
minimum time route, the route may turn out to be non-optimal as a result of the increased traffic 
assigned to the route.  The lack of coordination among different shippers and of information on 
the transport network make it difficult to predict changes in the transportation networks due to 
upcoming loads. In general, the current freight transportation system is full of inefficiencies 
leading to imbalances in traffic with respect to space and time, and these imbalances have 
significant individual and environmental costs. Information technologies, software and hardware 
technologies such as the integration of battery electric trucks (BEHTs) and techniques of truck 
platooning, offer a strong potential for dramatic improvements in balancing freight loads in 
multimodal networks. However, the electric trucks impose additional constraints due to the 
limitation of range and charging time of batteries; the different forms of truck platooning also 
require analysis with the combination of a coordinated routing system. 

In this project, the design and evaluation of a freight load balancing system are addressed by  
taking into account advances in theory, software and hardware technologies. The freight load 
balancing system is based on a co-simulation optimization approach that combines real time 
traffic simulators with a route optimization algorithm in a feedback configuration. The system 
takes into account the nonlinear impact of loads on traffic conditions. It assumes a “system 
manager” that allocates loads to time and space. The load balancing system is developed for two 
type of trucks, diesel and battery electric. Battery electric trucks are assumed to be those that 
qualify as a zero emission freight vehicle (ZEFV) under current California law and are part of 
demonstrations in drayage service. The use of mixed fleet of diesel and electric trucks introduces 
additional constraints and cost criteria to be considered, as BEHTs have a higher capital cost, 
shorter range, and longer refueling time than diesel trucks. The benefits of optimized load 
balancing with co-simulation for a mixed freight routing system are compared with alternative 
approaches of routing based on a co-simulator with no optimized load balancing over time and 
with optimized load balancing using historical traffic data instead of the data generated by the 
co-simulator. In both cases the proposed load balancing approach with co-simulation provides 
significant reduction in total cost.  The effect of the percentage of electric trucks in the mixed 
fleet of vehicles on the total cost is also investigated.  

Due to the complexities of traffic road network and the need to apply the coordinated routing 
system on a large-scale network, a distributed version of the optimized load balancing co-
simulation method is proposed. The performance of various partitioning techniques with respect 
to number of subnetworks, boundary nodes and demands under different penetration of electric 
trucks is experimented. 
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Finally, the concept of truck platooning has been incorporated into the proposed mixed freight 
load balancing system. Truck platooning is defined as a string of vehicle driving along the same 
lane as if it was one long vehicle.  Truck platooning seeks to reduce the energy consumption via 
the reduction of air drag force on the vehicles.  The purpose of incorporating truck platooning 
into the system is to demonstrate its flexibility and capability to be integrated with future freight 
management concepts and technologies.  

Several scenarios from the Southern California area that incorporates the Los Angeles and Long 
Beach Ports as well as the Los Angeles Metropolitan area are used for evaluation. The main 
outcomes of these evaluations are listed as follows: 

• The total energy cost without including charging cost decreases as the number of electric 
vehicles increases. However, this does not imply that for a specific route the use of electric 
vehicle is less costly than that of a diesel vehicle due to the complex influence from the 
surrounding traffic flow. 

• The total cost that also includes the charging cost tends to increase in general with 
increasing number of electric vehicles in the fleet. The assumption made is that the 
charging cost includes the labor cost of the driver waiting for the vehicle to charge. If 
charging is done off-duty this cost can be reduced considerably. 

• As expected the emissions go down drastically as the number of electric vehicles increases 
in the fleet. 

• The scalability issue can be solved by using a distributed load balancing method. 

• For the Long Beach network, the distributed load balancing is tested based on different 
number of subnetworks, demands and boundary nodes. By increasing the number of 
boundary nodes, we can achieve better assignment with more computational time. By 
increasing the number of subnetworks, we can achieve a large amount of computational 
time with a relatively small loss on optimality. However, a proper decomposition is 
needed since if the network is decomposed too much, the interactions between 
subnetworks will compromise the computational time gained from decomposition. 

• For Los Angeles Metropolitan network, similar relation between performance and 
number of subnetworks is revealed. 

• The proposed method is compatible with different truck platooning techniques and 
presents advantages with respect to total cost by utilizing truck platooning. 

We have to emphasize that the research performed is a preliminary step toward a coordinated 
freight load balancing and by no means captures the full complexity of freight transport. Some of 
the assumptions made need to be validated with experiments and some of the scenarios tested 
are rather simple when compared with the complexity of freight operations. This research 
however sets the foundations of the concept of coordinated freight load balancing system by 
solving some challenging problems whose solutions point the directions for future research.
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1. Introduction 
The efficient movement of goods is a critical factor for the sustainability and well-being of the 
world's population especially in urban areas. Worldwide container trade is growing at a 9.5% 
annual rate, and the US growth rate is around 6%. Current forecasts expects US commodity 
trade to approximately double by 2030 [1].  With the rising volume of containers processed in 
ports, especially in some of the largest ports such as New York and Los Angeles, congestion and 
air pollution are significantly exacerbated. Containers in the ports are distributed through 
various of transportation mode, such as truck and rail freight. Despite the continued growth of 
rail freight, trucks continue to retain the largest market share. Of the nearly 20 billion tons of 
freight moved in 2012, 13 billion moved by truck [2].  Dominance of truck increases as haulage 
distance decreases; for trips of less than 100 miles (about half of all freight haulage), the truck 
mode share is 84% [2]. Trucks dominate due to shipment size, trip length, and ubiquity of the 
road network, [3]–[6]. Due to size and differences in vehicle dynamics, freight transport by 
trucks has a bigger impact on the road network especially in urban areas. For example, trucks 
have different dynamics than passenger vehicles, they are often restricted to outside highway 
lanes, take longer distances to stop, have smaller deceleration and acceleration values, and 
more importantly pollute more and consume more fuel. In addition, they affect traffic flow 
much more than passenger vehicles especially during turns, stop and go traffic, lower speeds in 
highways etc. According to [7], due to the increase of container movement, there will be 
significant increases in highway congestion around US ports, air cargo, and border crossing 
nodes in the future. Congestion results in enormous costs to shippers, carriers and the 
economy. According to [8], the total cost of truck congestion amounted to approximately $74.5 
billion in 2016 across the US national highway system with the delay of 1.2 billion hours. Freight 
transport is also a significant contributor of 𝑁𝑂𝑥, 𝐶𝑂2, 𝑃𝑀10 and other pollutants. Of the 
Greenhouse Gases (GHG) emissions coming from transportation related sources, freight 
movement (trucks, ships, trains, airplanes and pipelines) account for 29% of the total; trucks 
are responsible for emitting 68% of GHG from these freight sources [9]. According to a report 
from the European Union [10], about 26% of the 𝐶𝑂2 emissions are due to heavy-duty 
vehicles. In European Union the impact of trucks on CO2 emissions is also significant relative to 
that of other vehicle classes as according to [10] about 26% of the CO2 emissions are due to 
heavy–duty vehicles in comparison to 61% for passenger vehicles, 12% for vans and 1% for two-
wheelers. According to [10] while the emissions from other sectors have been dropping during 
the last 3 decades those due to freight road transport have been rising. The fuel cost accounts 
for about one third of the total cost of owning and operating a truck [11]. In the US the cost of 
operating a truck averaged $1.69 per mile, a 6% increase in 2017 according to a report released 
Oct. 2, 2018 by the American Transportation Research Institute (ATRI) [12]. Broken down 
hourly, the report said it cost $66.65 per hour to operate a truck in 2017, compared with $63.66 
in 2016 and $58 in 2009 [12].  On a percentage basis, driver salaries, benefits and bonuses 
account for 43% of the cost of operating a truck, fuel is 22%, lease and truck payments make up 
16%, and repairs and maintenance are 10%. Other costs including vehicle insurance, permits, 
tolls and tires make up the remaining 9% [12]. These statistics suggest that the driver is the 
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highest cost of operating a truck followed by the fuel cost and these statistics hold in the US as 
well as EU in general. 

The above statistics together with the efforts of cutting down emissions motivate a number of 
key technologies and set the trend for the future of the trucking industry. These technologies 
can be divided into two major parts: Hardware changes and Software/intelligence. Hardware 
changes include hybrid and electric propulsion systems, tires with reduced rolling resistance, 
vehicle design with improved aerodynamics etc. Software/intelligence includes intelligence on 
the vehicle level such as improved lateral and longitudinal control systems, optimized engine 
control actions, connectivity and use of intelligent transportation systems (ITS).  

ITS connects the vehicle with the infrastructure and addresses issues such as optimum routing 
in order to minimize travel times, energy consumption, reduce emissions and cut additional 
costs such as using less number of drivers as in the case of truck platoons. However, some of 
these technologies whether hardware or software are often interconnected. For example, the 
use of electric trucks brings up the constraint of available charging stations and charging times 
which will affect optimum routing decisions. The battery range and charging time as well as 
availability of charging stations where needed are some of the challenges of electric trucks [13]. 
Nevertheless the industry is moving ahead with companies like Volvo and Tesla producing 
electric trucks [14] for short-haul  operations in urban areas  where the need for cutting down 
pollution is much higher. 

Research on vehicle routing is very rich and many optimization tools have been developed over 
the years which will become very useful in addressing some of the issues mentioned above. The 
Vehicle Routing Problem (VRP) formulation was first introduced by Dantzig and Ramser [15], as 
a generalization of the Traveling Salesman Problem (TSP) presented by Flood [16]. Since then, 
there is a significant amount of research on this topic which can be divided into 4 main 
categories. First, in static and deterministic problems, all inputs are known beforehand and 
vehicle routes do not change once they are in execution. This classical problem has been 
extensively studied in the literature, and we refer the interested reader to the recent reviews of 
exact and approximate methods by Baldacci et al. [17], Cordeau et al. [18], Laporte [19], [20], 
and Toth and Vigo [21]. Second, static and stochastic problems are characterized by inputs 
partially known as random variables, which realizations are only revealed during the execution 
of the routes. Additionally, it is assumed that routes are selected a priori and only minor 
changes are allowed afterwards. Uncertainty may affect any of the input data like stochastic 
times where either service or travel times are modeled by random variables [22], [23]; and 
stochastic demands [24]–[28]. Third dynamic and deterministic problems have part or all of the 
inputs as unknown and appear dynamically during the design or execution of the routes. For 
these problems, vehicle routes are redefined in an ongoing fashion, requiring technological 
support for real-time communication between the vehicles and the decision maker (e.g., mobile 
phones and global positioning systems). Fourth, dynamic and stochastic problems have part or 
all of their inputs unknown and appear dynamically during the execution of the routes, but in 
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contrast with the latter category, exploitable stochastic knowledge is available on the 
dynamically revealed information. As before, the vehicle routes can be redefined in an ongoing 
fashion with the help of technological support. For a comprehensive review of both the 
deterministic and the stochastic dynamic VRP, we refer the interested reader to [24]–[28]. 
Additional work on shortest route problems which cover the four categories mentioned can be 
found in [29]–[37] which also include work on multimodal routing and planning.  

With respect to electric vehicle routing, Ambrose and Jaller [38] examined the result of electric 
drayage trucks at the Port of Los Angeles and assessed emissions reductions with increased 
electrification of port truck operations. Nan et al. presented a mathematical programming 
model and solution method for path-constrained traffic assignment problem for electric 
vehicles in congested networks [39]. Bahrami et al. proposed a complementarity equilibrium 
model for electric vehicles without violating driving range constraints [40]. Based on the 
assumption of large adoption of electric vehicles, Faridimehr et al. [41] proposed a two-stage 
stochastic programming model to determine the optimal network of charging stations for a 
community as well as the charging decision for each electric vehicle in this community. For a 
more detailed topic for electric vehicle traffic assignment, Yao et al. [42] compared electric 
vehicle’s energy consumption rate on different road types from the floating car data collected 
from the road networks in Beijing.  

Despite the amount of research in vehicle routing, there are many issues that need to be 
addressed and new techniques need to be developed in order to make full use of these 
emerging technologies in a way that benefits the overall system and the environment. The 
complexity of the traffic network is immense due to the nonhomogeneous dynamics of 
different vehicle classes at the vehicle level to traffic nonlinear behavior at the traffic flow level.  
Mathematical models whether static, dynamic or stochastic used by most routing schemes 
cannot possibly capture the complexity of the real system in order to achieve the best possible 
outcomes especially due to the added constraints of the electric trucks. A true optimum route 
for a truck for example may end up been far away from the optimum generated from a model 
due to uncertainties not captured by the mathematical model that optimality is based on. The 
development of accurate mathematical models to describe traffic characteristics has always 
been a challenge and is becoming more of a challenge if electric trucks are included in traffic. 
The availability of fast computers and advanced software tools allows for the first time the 
development of traffic simulation models which can run in real time to provide the information 
and predicted states of the traffic network in order to choose routes that are more likely to be 
close to optimality than those based on simplified mathematical models. The challenge is how 
these simulation models can be integrated with optimization tools in order to generate more 
realistic outcomes.  

Along the pursuit for energy saving, researchers in the area of truck automation came up with 
the idea of platooning, where a string of vehicles drive along the same trajectory with only a 
short gap in between, since the emerging of automated driving for passenger vehicles from the 
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1950s [43]. Driving experiments on testing the performance of different form of truck 
platooning are conducted around the world [44]–[50].  Gehring and Fritz [44]conducted 
experiments on a platoon of three heavy-duty trucks along the Brenner Pass through the Alps 
between Austria and Italy with a longitudinal control with vehicle to vehicle communication. Lu 
and Shladover [47], [51] applied Dedicated Short Range Communication (DSRC) radio sets with 
an automatic longitudinal control on a platoon of three Class 8 trucks and showed an average 
4.3% energy saving from the lead truck, 10% from the second truck and 14% from the third 
truck. Kunze et al. [48] developed a platoon system of four heavy duty trucks, constituted with 
a lead truck driven by a human driver and three following trucks by automated driving system. 
Tsugawa [49] developed a automated control system with lateral control and longitudinal 
control for a platoon of three trucks and showed the saving on fuel consumption is 15% in 
simulation. However, based on the knowledge of authors, researches and analysis on the 
routing system that cover platooning techniques are still left to be fully studied. In one section 
of this report, we integrated the characteristics of truck platooning into the routing system for 
heavy-duty trucks and studied the impact of it. 

In our past work [37], [52] we considered the use of real time traffic simulators as part of a 
centralized coordinated multimodal freight load balancing, where we successfully showed the 
significance of traffic simulators in planning freight routes to  achieve a good balance of freight 
loads across the road and rail network. In this project we extended the work of [37], [52] which 
was focused on diesel trucks  to include electric trucks in mixed fleets with diesel trucks. Electric 
trucks will be entering the market due to efforts to reduce emissions and most companies will 
be operating mixed fleets of trucks. Therefore, routing mixed fleets of trucks in a coordinated 
manner that will have additional benefits to the environment and costs is an important 
research problem this project focused on. The idea of truck platooning was integrated into the 
system and experiments on the impacts from different platooning techniques were also 
examined. Also, as a solution for the computation complexity induced by the scalability of 
network, a distributed version of the dynamic routing system is proposed and tested as a 
section of this report.  

The report is organized as follows. Section 2 deals with the main project content. Respectively 
Section 2.1 presents the literatures of dynamic models for truck platoons. Section 2.2 presents 
the traffic simulator built for the real-time traffic prediction with a commercial transportation 
software. Section 2.3 presents the formulation of the optimization models for the mixed freight 
load balancing system and the optimization algorithm. Section 2.4 presents the key elements 
for the optimization algorithm as well as the emission model to assess the emission from the 
whole assignment procedure. Section 2.5 presents the partitioning techniques for distributed 
routing generation and in Section 2.6 we present the simulation results that demonstrate the 
consistency of performance. Finally, conclusions are presented in Section 3 and appendices can 
be found in section 4. 



Dynamic Routing of Trucks and Truck Platoons Using Real-Time Traffic Simulators 

5 

 

2. Project Contents 

2.1 Dynamic models of truck platoons 
In this section, we performed an extensive literature review on characteristics of different types 

of commercial vehicles, fuel economy and refueling conditions of trucks that already in service. 

The studies reviewed are: Port of LA interim electric drayage report [53], Foothill bus 

comparative study [54], studies from California Air Resources Board (CARB) [55], Frito-Lay 

delivery truck comparative study [56], Smith Newton trucks [57], Navistar eStar [57] as well as a 

market survey developed by Giuliano et al [58]. The characteristics of different types of 

commercial vehicles, fuel economy and refueling time are presented in Table I, II and III. 

Table I: Characteristics of different types of commercial vehicles 

Truck Type Class Description Example Applications 

Light Commercial 
Vehicles (LCV) 
 

3 One- and two- axle, 
four-tire trucks 

Heavy duty pick-up, 
walk-in van, 
minibus, box truck 

Local pick-up 
and delivery; 
heavy duty 
pickup trucks, 
vans, minibuses 

Medium 
Commercial 
Vehicles (MCV) 
 

4 Two- and three- axle 
buses 

Large walk-in van, 
city delivery truck 

Parcel delivery, 
short distance 

5 Two-axle, six-tire, 
single-unit trucks 

Bucket truck, large 
walk-in van, city 
delivery truck 

6 Three-axle single-
unit trucks 

Beverage truck, 
school bus, rack 
truck 

Heavy Commercial 
Vehicles (HCV) 

7 Four or more axles 
single-unit trucks 

Refuse, city transit 
bus, medium semi-
tractor, tow truck 

Long haul 
truckload or less 
than truckload 
cargo 
(containers) 

8 Four or fewer axle 
single-trailer trucks 

Cement mixer, 
heavy semi-tractor, 
dump truck, 
sleeper cab, fire 
truck, refrigerator 
van, tour bus 

9 Five-axle single-
trailer trucks 

2 units: heavy 
semi-tractor with 
trailer 
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10 Six or more axle 
single-trailer trucks 

2 units: heavy 
semi-tractor with 
trailer 

11 Five or fewer axle 
multi-trailer trucks 

3 units: heavy 
semi-tractor with 2 
trailers 

12 Six-axle multi-trailer 
trucks 

3 units: heavy 
semi-tractor with 2 
trailers 

13 Seven or more axle 
multi-trailer trucks 

3 units: heavy 
semi-tractor with 2 
trailers 

 

Table II: Fuel economy of ZEV, near-ZEV and diesel heavy- and medium-duty vehicles (DGE: 
diesel gallon equivalent) 

Demonstration project Class Fuel Vehicles Fuel economy 
(miles/DGE) 

Port of LA trucks 8 Electric 7 10.8 

Foothill bus comparative study  
 

8 Electric 12 17.48 

CNG 8 4.51 

Transpower yard tractor, IKEA in-use, 
comparison drawn from CARB study 

8 Electric Not given 0.45 DGE/hr 

Diesel Not given 2.4 G/hr 

Transpower yard tractor, Port of LA in-
use comparison drawn from CARB 
study 

8 Electric Not given 0.345 DGE/hr 

Diesel Not given 2.4 G/hr 

Altoona bus Commuter test cycle, 
comparison drawn from CARB study 

8 Electric Not given  26.0 

Diesel Not given 7.5 

Altoona bus CBD test cycle, 
comparison drawn from CARB study 

8 Electric Not given  18.3 

Diesel Not given 2.6 

Frito-Lay delivery truck comparative 
study 

6 Electric 10 24.09 

Diesel 9 7.63 

Smith Newton trucks 6 Electric 259 24.9 

CalHEAT step van, comparison drawn 
from CARB study 

5 Electric Not given 56.2 

Diesel Not given 11.7 

SD Airport V6 shuttle can in use 
comparison drawn from CARB study  

3 Electric Not given 80.6 

Diesel Not given 17.9 
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CalHEAT step van (in-use), comparison 
drawn from CARB study 

3 Electric Not given 76.8 

Diesel  Not given 11.2 

Navistar eStar trucks  3 Electric 101 46.1 

 
Table III: Demonstration project Class Fuel Refueling time Refueling conditions Fuel capacity 
Range (miles) 

Demonstration 
project 

Class Fuel Refueling 
time 

Refueling 
conditions 

Fuel 
capacity 

Range 
(miles) 

Navistar eStar 
delivery vans 

3 Electric Average 
charge 
duration 3.5 
hours 

Predominantly 
charged in the 
night/evening 

80kWh 
battery 

100 (av. 
Daily use 
20) 

Smith Newton 
delivery vans 
 

6 Electric 
 

Average 
charge 
duration 6.4 
hours 

Predominantly 
charged in the 
night/evening 

80kWh 
battery 

100 (av. 
Daily use 
25) 

Port of LA 8 Electric 4 hours with 
single 70 kW 
charger from 
20% charge 

Dedicated 
infrastructure 

Not given 70-100 at 
av. load 
(65,000 
lbs) 

Firto-Lay 
delivery truck 

6 Electric Average 6.1 
hours to 
recharge 
from 42% 
(post-
loading) to 
100% 

Recharged at 
depot, 
recharging 
occurs in two 
steps 
(separated by 
loading) 

80 kWh 
battery 

Drove 32 
miles/day 
on 
average 
after full 
charge 

Foothill bus 8 Electric Reaching full 
charger with 
overhead 
charges <10 
mins 

On-route fast-
charge station 
at mid-way 
point in route. 
Bus charged 
through 
overhead 
charger 

88kWh 
battery 

Not given 

ZEBA bus 8 Fuel 
cell 

30 kg of 𝐻2 in 
6 mins 

Central 
station with 
𝐻2 produced 
on-site 

40 kg 𝐻2 235 
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Sunline bus 8 Fuel 
cell 

Not given Fueled at least 
once daily at 
station 

50 kg 𝐻2 & 
11 kWh 
battery 

270 

Coca Cola 8 Diesel 
hybrid 

Not given Not given  56 gallon 
diesel tank 
and 1.8 kWh 
battery 

Not given 

Odyne trucks 6-8 Diesel 
hybrid 

Not given  Not given 28.4 kWh 
battery (and 
diesel tank, 
size not 
given) 

Not given 

 
More acceleration behaviors are presented in  Table IV from [59]. 
Table IIV: Acceleration behavior 

Type Sample 
Size 

Piecewise-constant average acceleration rates (𝒇𝒕/𝒔𝟐) 0-500 ft. 
Average 
acceleration 

rate (𝒇𝒕/𝒔𝟐) 

Heavy-
duty 

71 𝑎0−20 𝑎20−50 𝑎50−100 𝑎100−200 𝑎200−300 𝑎300−400 𝑎400−500 Mean S.D. 

2.12 1.97 2.04 1.91 1.91 1.94 1.86 1.93 0.42 

 
However, the statistics found are static and the trucks are working under various conditions so 
that its dynamic characteristics vary in different working conditions. In a summery, the 
characteristics of trucks can be divided into two categories: constant and variant. The constant 
characteristics include length, shape, number of wheels, et al. The variant characteristics are the 
ones that change with working mode: such as air resistance force and energy consumption rate. 
To achieve an accurate estimation of the variant characteristics, we proposed a method that 
combines mapping the driving speed to working mode and mapping the working mode to energy 
consumption rate. Aa an important part of this procedure, the analytical model of typical diesel 
engines and electric engines need to be implemented and tested with driving cycles. Drive cycles 
are files that document the speed of a specific vehicle interval by interval under some driving 
mode. The analytic model [60] is used to describe the diesel engine and [61] to describe the 
electric engine of heavy-duty freight vehicles. In this project, we use the following typical drive 
cycles provided by National Renewable Energy Laboratory (NREL) [62]:  

• California Air Resources Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) 
Composite Cycle 

• CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Creep Segment (a drive cycle with 
average speed 1.76 mph, average driving speed 3.00 mph, max speed 8.20 mph) 

• CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Cruise Segment (a drive cycle with 
average speed 39.86 mph, average driving speed 43.22 mph, max speed 59.30 mph) 
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• CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Segment (a drive cycle with 
average speed 15.36 mph, average driving speed 18.20 mph, max speed 47.50 mph) 

• City Suburban Heavy Vehicle Cycle (CSHVC) 
 
By testing drive cycles with diesel and electric engines, we gained the results showed in Table V. 
 
Table V: Amount of energy consumed (kWh) by the diesel & electric engine 

Type suburban transient cruise creep composite 

Diesel 650.71 277.50 2257.19 15.14 2558.53 

Electric 500.04 187.09 574.10 79.18 840.38 

 
Based on the above tests the % energy improvement produced by the electric engine when 
compared with the diesel on are summarized as follows: 

• % Energy improvement by electric during suburban cycle: 23% 

• % Energy improvement by electric during transient cycle: 32% 

• % Energy improvement by electric during cruise cycle: 75% 

• % Energy improvement by electric during creep cycle: -423% 

• % Energy improvement by electric during composite cycle: 67% 

2.2 Traffic simulator for real time traffic predictions 
In this section, we selected a road network in Southern California that includes the twin ports 
and used a commercial software to develop traffic simulation models. The simulation software 
chosen is VISUM, which is a macroscopic traffic simulator. The advantage of the macroscopic 
traffic simulator over the microscopic one is that a macroscopic traffic simulator can efficiently 
generate the predicted traffic states, which is required for on-line large-scale applications 
where complexity makes microscopic simulations difficult if at all possible. The road network is 
shown in Fig 1. The network covers an area from the Los Angeles/Long Beach terminal port area 
from the south to I 105 freeway in the north.  The numbers with circle represent the locations 
of service network nodes. The service network nodes are composed of O/D nodes as well as 
intersections of freeways and major arterial ways. The traffic simulator serves as a predictor for 
the traffic status during the whole method procedure. The numbers in the circles are service 
nodes used in service network, which is introduced in the method. 



Dynamic Routing of Trucks and Truck Platoons Using Real-Time Traffic Simulators 

10 

 

Figure 1: Road network configured in Visum

 
2.3 Optimum truck routing 

2.3.1 Optimization model 
In this subsection, we developed the optimization models for the centrally coordinated mixed 
freight routing system where different shippers send their demand to a central coordinator.  
We also developed a co-simulation optimization approach to solve the problem, which can be 
described as follows: a central coordinator receives from individual users their 
origin/destination (O/D) demand and information about the mixed fleet of diesel and electric 
trucks and generates routes that minimize an overall system cost. The impact of the loads on 
each link is taken into account to achieve a load balance across the road network. The dynamic 
and predicted link cost information is generated by a traffic simulator that is part of the overall 
co-simulation optimization approach. The predicted link costs such as travel time is important 
in calculating battery life in the case of electric trucks. 

Formulation 
Consider the road network to be a directed graph 𝐺(𝐸, 𝑉), where 𝐸 is the set of all links and 𝑉 
is the set of all nodes. Among all the nodes, a subset of them are origin nodes, denoted as 𝑂, 
i.e. 𝑂 ⊂  𝑉. Another subset of nodes are destination nodes, denoted as 𝐷, i.e. 𝐷 ⊂  𝑉. For a 
certain pair of origin and destination nodes (𝑖, 𝑗), 𝑖 ∈  𝑂, 𝑗 ∈  𝐷, the demand volume is 𝑞𝑖,𝑗. All 

the truck types are included in a set 𝑈. To represent the distribution of trucks, we use 𝑚𝑖
𝑢 as 

the number of total available trucks of type 𝑢 at node 𝑖. To cope with the temporal dimension, 
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we discretize the time horizon into |𝐾| time intervals and use 𝐾 as the set of all the time 
intervals. The following notation is used in the formulation to follow: 

• 𝑅𝑖,𝑗
𝑢 : The set of routes for trucks of type 𝑢 from 𝑖 to 𝑗, 𝑖 ∈  𝑂, 𝑗 ∈  𝐷; 

• 𝑋𝑖,𝑗,𝑟,𝑘
𝑢 : The number of trucks of type 𝑢 from 𝑖 to 𝑗, 𝑖 ∈  𝑂, 𝑗 ∈  𝐷, using route 𝑟 in route 

set 𝑅𝑖,𝑗
𝑢  with a departure time 𝑘; 

• 𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋): The average service cost per container fulfilled by a truck of type 𝑢 from 𝑖 to 

𝑗, 𝑖 ∈  𝑂, 𝑗 ∈  𝐷, using route 𝑟 in route set 𝑅𝑖,𝑗
𝑢  with a departure time 𝑘; 

Given the above notation we formulate the problem as follows: 

𝑚𝑖𝑛𝑋   ∑ ∑ ∑ ∑ ∑ 𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋)𝑋𝑖,𝑗,𝑟,𝑘

𝑢

𝑟∈𝑅𝑖,𝑗
𝑢𝑢∈𝑈𝑗∈𝐷𝑖∈𝑂𝑘∈𝐾

                                                               (1) 

∑ ∑ ∑ 𝑋𝑖,𝑗,𝑟,𝑘
𝑢

𝑟∈𝑅𝑖,𝑗
𝑢𝑢∈𝑈𝑘∈𝐾

 =  𝑞𝑖,𝑗, ∀ 𝑖 ∈  𝑂, 𝑗 ∈  𝐷                                                                  (2) 

∑ ∑ ∑ 𝑋𝑖,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑖.𝑗
𝑢

 

𝑗∈ 𝐽𝑘∈𝐾

≤  𝑚𝑖
𝑢, ∀ 𝑖 ∈  𝐼, 𝑢 ∈  𝑈                                                                   (3) 

𝑋𝑖,𝑗,𝑟,𝑘
𝑢 ≥  0                                                                                                                              (4) 

Equation (1) is the objective function, which aims to minimize the sum of the service cost of all 
the freight loads which are assumed to be containers. 𝑆𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) is the unit service cost of 

transporting a container with a truck of type 𝑢 using route 𝑟 from 𝑖 to 𝑗 at time 𝑘 given 𝑋. The 
cost 𝑆𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) is given by: 

𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋) =  𝐶𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) + 𝜂 𝑇𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋)                                                                              (5) 

where 𝐶𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋) is the cost of the consumed energy, 𝑇𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) is the travel time and 𝜂 is the 

value of time. The energy and travel time cost depend on the dynamics of the traffic network. 
The dynamics of the traffic network can be expressed as nonlinear dynamic functions of all 
decision variables, denoted as 𝑋, and will be discussed in the following parts. In our case, the 
energy cost depends on the dynamics of the traffic network. More specifically, we formulate 
the energy cost coefficient of each truck type as a polynomial function of the speed of the road 
link, where the parameters of the function are estimated using regression over a set of testing 
data. Here we assume one truck can only load one container, so the total number of trucks for 
an O/D pair is equal to the demand of the O/D pair, as shown in equation (2). Equation (3) 
represents the constraints on availability of a certain type of truck at each node. Equation (3) 
can also be used to formulate the distribution of available mixed freight vehicles over the road 
network at the beginning of the time horizon. 
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The dynamics of a traffic network are highly nonlinear and exhibit the following temporal-
spatial relations: traffic flow dynamics in a link and between links. The dynamics in a link 
describe how the traffic flow moves from the upstream end of a link to the downstream end, 
while the dynamics between links describe how the traffic flow propagates across the traffic 
network. In most of the literature of vehicle routing, the complex dynamics of the traffic 
network are overly simplified and the dynamics between links are ignored. As a result, the 
calculated optimum routes may not be optimum in a realistic situation. In our approach, we 
introduce the following changes that makes it more likely for a theoretical optimum to be 
closer to one in practice:  

• Instead of using a simplified mathematical model to account for the complex traffic 
dynamics, we use a traffic simulation model in a co-simulation optimization approach. 
The simulation model provides a far more accurate description of the traffic dynamical 
characteristics to be used by the optimum route generator. 

• To efficiently apply the simulation model, we construct a service network layer as a 
connection between the optimizer and the simulation model. 

• To speed up the iterative algorithm process, we propose a way to intelligently choose 
the direction and step size at each iteration based on the knowledge of the marginal 
cost. 

To understand our method, we first discuss the configuration of the service network and the 
changes it brings to the above formulation. To differentiate the notation between the service 
network and the road traffic network, we use the following terminologies: 

• Road network link: edge in the road network 

• Path: a sequence of concatenated road network links 

• Service segment: edge in the service network 

• Route: a sequence of concatenated service segments  

A service network can be configured based on a traffic network in the following steps: 

• Collect a subset of nodes in the traffic network including all O/D nodes as well as the 
nodes necessary for the routing of freight vehicles to form the service node set 𝑁𝑆. 
These necessary nodes can be port terminals, truck depots, charging stations and so on. 

• Construct a set of segments 𝐿 connecting nodes in 𝑁𝑆.   

The service network can be seen as an abstracted upper layer of the traffic network. With the 
inclusion of the service network, the relations between routes and links can be divided into two 
parts: relations between routes and service segments and relations between service segments 
and traffic network links. The relations between routes and service segments can be shown as 
follows: 
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∑ ∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑟,𝑘
𝑢 𝛿𝑙,𝑟,𝜏,𝑘

𝑢

𝜏≤ 𝑘

 

𝑟∈ 𝑅𝑖,𝑗
𝑢𝑢∈ 𝑈𝑗∈ 𝐷𝑖∈ 𝑂

=  𝑥𝑙,𝑘
𝑢                                                                                     (6) 

where 𝑙 ∈  𝐿, 𝑘 ∈  𝐾 and 𝛿𝑙,𝑟,𝜏,𝑘
𝑢  =  1 when the truck of type 𝑢 uses route 𝑟 with departure time 

𝜏 passing through segment 𝑙 at time 𝑘, otherwise, 𝛿𝑙,𝑟,𝜏,𝑘
𝑢  =  0. As for the relations between the 

service segment and traffic network links, we denote as 𝑡𝑙,𝑘
𝑝  the travel time on path 𝑝 if a truck 

departs from the origin of segment 𝑙 at time 𝑘. Assume links constituting path 𝑝 to be 
𝑒𝑝,1, 𝑒𝑝,2, … , 𝑒𝑝,𝑁𝑝

, where 𝑁𝑝 is the total number of links on path 𝑝. We define 𝜉𝑒,𝑘 as the 

entering time at link 𝑒 of a truck with a departure time 𝑘 from the origin of that path. With 𝑤𝑒,𝑘 
to be the travel time of link 𝑒 at time 𝑘, we now write the travel time of a path as follows: 

𝑡𝑙,𝑘
𝑝  = ∑ 𝑤𝑒𝑝,𝑛𝑝

𝑁𝑝

𝑛𝑝 = 1
𝜉𝑘,𝑒𝑝,𝑛𝑝

                                                                                                             (7) 

𝜉𝑘,𝑒𝑝,1
=  1                                                                                                                                                (8) 

𝜉𝑘,𝑒𝑝,𝑛𝑝+1
= 𝜉𝑘,𝑒𝑝,𝑛𝑝

 +  𝑤𝑒𝑝,𝑛𝑝 ,𝜉𝑘,𝑒𝑝,𝑛𝑝
                                                                                                  (9) 

where 𝑛𝑝  =  1, … , 𝑁𝑝 − 1. To make the notation simpler, we let  𝑤̂𝑝,𝑛𝑝,𝑘 ≡  𝑤𝑒𝑝,𝑛𝑝,𝜉𝑘,𝑒𝑝,𝑛𝑝

 to 

denote the travel time of link 𝑒𝑝,𝑛𝑝
 on path 𝑝 with the path departure time being 𝜉𝑘,𝑒𝑝,𝑛𝑝

. Given 

the service segment volume 𝑥𝑙,𝑘
𝑢  and the path set of segment 𝑙, the vehicle dispatching problem 

in the traffic network can be expressed as follows: 

min
𝑦

𝑇𝐶  = ∑ ∑ ∑ (𝑐𝑙,𝑘
𝑝,𝑢 + 𝜂 𝑡𝑙,𝑘

𝑝,𝑢)

𝑝∈ 𝑃𝑙

 𝑦𝑙,𝑘
𝑝,𝑢 

𝑙∈ 𝐿𝑘∈ 𝐾

                                                                                      (10) 

where 𝑇𝐶 stands for the total cost of the assignment with mixed freight vehicles, which is a 

combined value of energy consumption cost and travel time cost. 𝑐𝑙,𝑘
𝑝,𝑢is the energy 

consumption coefficient for trucks of type 𝑢 passing through path 𝑝 of segment 𝑙 at time 𝑘, 𝑡𝑙,𝑘
𝑝,𝑢 

is the travel time of the path 𝑝 in segment 𝑙 that departs at time 𝑘, 𝑦𝑙,𝑘
𝑝,𝑢 is the number of trucks 

of type 𝑢 assigned to pass through path 𝑝 of segment 𝑙 at time 𝑘 and 𝜂 is the value of time as 
mentioned before. The total cost is represented by summing over the energy consumption cost 
and travel time cost of all the segments with respect to time and the objective is to find out an 
assignment for the mixed freight vehicles with minimum total cost. The constraints are defined 
by equations (6)-(9) generated from the service network as well as the complex dynamics from 
the simulated traffic network. In our method, the nonlinear dynamical functions for traffic 
networks are replaced by the real time traffic flow simulation model that generates the states 
of the network to be used in the optimization problem. Aside from equations (6)-(9), the 
following equations are used to represent the relation between variables from the service 
network and the simulated traffic network: 
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∑ 𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈ 𝑃𝑙

  =  𝑥𝑙,𝑘
𝑢 ,

∀ 𝑙 ∈  𝐿, 𝑘 ∈  𝐾                                                                                                   (11) 

𝑦𝑙,𝑘
𝑝,𝑢 ≥  0, ∀ 𝑙 ∈  𝐿, 𝑝

∈  𝑃𝑙, 𝑘 \𝑖𝑛 𝐾                                                                                                           (12) 

2.3.2 Optimization algorithm 
In this subsection, we discuss the optimization algorithm used to solve this problem. Figure 2 
gives a general overview of the method. The service graph optimization plays a central role; in 
practice, it can be a central coordinator whose aim is to assign trucks to fulfill demands at 
minimal system cost. The inputs to the optimization are demands, truck types and their 
distribution, emission model and other predetermined parameters. Demands represent the 
number of containers to be transferred from origin to destination nodes. The truck types 
include the physical (weight, length, frontal area, et al.), dynamic (max speed, acceleration, et 
al.) and energy consumption (the amount of energy consumed based on the dynamic states) 
characteristics. Based on the energy consumption characteristics of diesel/electric trucks, the 
cost coefficients on each segment of both types of trucks are calculated under different traffic 
conditions. An emission model from National Renewal Energy Laboratory (NREL) is used to 
calculate the emissions. A real-time traffic simulator is used to capture the dynamical 
characteristics of traffic and provide traffic status such as travel times along the links and routes 
as well as estimates of the energy cost of diesel and electric trucks depending on the simulated 
traffic flow. The information from the simulator is used by the service graph optimization 
component to update the marginal cost of each service segment, which is used to update the 
route cost. Based on the simulated route cost, the route collection for each O/D pair is updated 
as well. Then given the updated route collection, the assignment of diesel/electric trucks for 
each O/D pair is updated by solving an integer combinatorial programming problem using a 
properly selected efficient step size. The new assignment is then generated and passed to the 
next iteration.  
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Figure 2: Framework of proposed method 

 

The traffic simulator uses two types of inputs: background traffic flow and assignment traffic 
flow. The background traffic flow is obtained from various sources, such as PeMS [63] and 
Google Maps [64]. The assignment traffic flow is generated by the optimizer. The co-simulation 
optimization procedure iterates in a feedback loop that involves the traffic simulator and 
service graph optimization. Through this procedure, the states of assignment traffic flow and 
road network feedback are sequentially updated until both states converge. The difficulty in 
this procedure is to calculate the marginal cost of each route, which is equal to the change in 
the total cost as a result of adding one unit of demand on that route. Since the total cost 𝑇𝐶 of 
equation (10) is complex, the marginal cost with respect to a route cannot be calculated 
directly. One way to calculate the marginal cost is to use Monte Carlo to simulate the impact of 
one unit of demand on each route at each time. However, it is impractical to enumerate all 
routes due to the fact that the number of possible routes grows exponentially with respect to 
the service network size. Our proposed approach bypasses this issue and works as follows: 

1. Initialize cost coefficients based on the physical features such as speed limit for each 
segment 𝑙 and iteration number 𝑛 = 0. Initialize the diesel/electric route collections for 
each O/D pair based on the segment cost calculated with the cost coefficients. Establish 

the initial route flow vector 𝑋(0) by assigning the portion of demands in the origin node 
to electric trucks with the portion of demand to be equal to the portion of electric trucks 
in the mixed fleet. 

2. If 𝑛 > 1, check if the objective function value of the current iteration converges, i.e., 

|𝑇𝐶(𝑋(𝑛)) − 𝑇𝐶(𝑋(𝑛−1))|  < 𝜀; 𝜀 is set to be a small number. If it converges, then stop 
the procedure and return with route flow vector; otherwise, continue to the next step. 
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3. Input the route flow vector 𝑋(𝑛) into the traffic simulator and obtain the marginal cost 
of each segment. 

4. Update the marginal cost of each segment as well as diesel/electric routes for each O/D 
pair and check whether there is a new minimal marginal cost route. If there is, then add 
it into the route collection. 

5. Solve the following optimization problem for each origin node 𝑜 to obtain a feasible 

route flow vector 𝑋̂𝑛. 

min
X

∑ ∑ ∑ ∑ 𝑀𝐶𝑜,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑜,𝑗
𝑢

 𝑋𝑜,𝑗,𝑟,𝑘
𝑢

𝑗∈ 𝐷𝑘∈ 𝐾

 

𝑢∈ 𝑈

                                                                      (13) 

∑ ∑ ∑ 𝑋𝑜,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑜,𝑗,𝑘
𝑢

  

𝑘∈ 𝐾

 

𝑢∈ 𝑈

  =  𝑞𝑜,𝑗, ∀ 𝑗 ∈  𝐷                                                                     (14) 

∑ ∑ ∑ 𝑋𝑜,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑜,𝑗,𝑘
𝑢

 

𝑗∈ 𝐷𝑘∈ 𝐾

≤  𝑚𝑜
𝑢, ∀ 𝑢 ∈  𝑈                                                                           (15) 

where 𝑀𝐶𝑜,𝑗,𝑟,𝑘
𝑢  is the marginal cost of route 𝑟 from 𝑜 to 𝑗 with a truck of type 𝑢 

departing at time 𝑘. The marginal cost of a route is the sum of the marginal costs of the 
segments along it. 

6. Set the route flow vector for the next iteration as 𝑋(𝑛+1)  =  𝑋(𝑛)  + 𝜆(𝑛) ⋅ (𝑋̂𝑛 − 𝑋(𝑛)), 

where 𝜆(𝑛) is the step size at the 𝑛th iteration, and go back to step 2. The step size 

𝜆(𝑛) at the 𝑛th iteration is selected as in [37]. 

In the optimization algorithm, marginal cost of each segment serves as an important role, in 
pointing out the direction as well as the step size for the next iteration for the optimization 
algorithm. In the next subsection, we will present the calculation of marginal cost, which in 
essence tells us the evaluation of the routes. Also, an emission model used for the test of 
emissions from the procedure is introduced in the next subsection.  

2.4 Evaluation of optimum routes 

2.4.1 Marginal cost 
The marginal cost represents the change in the total cost if one unit of demand/container is 
changed on the path. It can be formulated as following: 

𝑀𝐶𝑃
𝑙′,𝑘′
𝑝′,𝑢′

=  
𝜕𝑇𝐶

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ =

𝜕 ∑ ∑ ∑ (𝑐𝑙,𝑘
𝑝,𝑢 + 𝜂 𝑡𝑙,𝑘

𝑝,𝑢)𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′  

=  𝑐
𝑙′,𝑘′
𝑝′,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

+ 𝜂 ∑ ∑ ∑
𝜕𝑡𝑙,𝑘

𝑝,𝑢

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ 𝑦𝑙,𝑘

𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

+ ∑ ∑ ∑
𝜕𝑐𝑙,𝑘

𝑝,𝑢

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ 𝑦𝑙,𝑘

𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

                                 (16) 
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where the first two terms are the cost of the path and the third term describes the travel time 
cost change due to the impact on the link travel time based on the dynamics of the traffic 
system. The fourth term accounts for the change of energy cost associated with the changes in 
link volume and can be calculated approximately using the traffic network states from the 
simulator. According to the derivative chain rule and equation (7): 

𝜕𝑡𝑙,𝑘
𝑝,𝑢

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ =  ∑

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

=  ∑
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘

𝑁𝑝

𝑛𝑝=1

𝜕𝑧̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′                                                                                (17) 

where 𝑧̂𝑝,𝑛𝑝,𝑘 is the traffic volume of the link 𝑒𝑝,𝑛𝑝
 on path 𝑝 with the path departure time 

being 𝜉𝑘,𝑒𝑝,𝑛_𝑝.The term 
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘
 represents the travel time change in link 𝑒𝑝,𝑛𝑝

 at time 𝜉𝑘,𝑒𝑝,𝑛_𝑝. 

caused by changing the link volume by one unit. One of the most commonly used relationships 
between link volume and travel time is the Bureau of Public Roads (BPR) function [65].  

𝑤𝑒 = 𝑡𝑓(1 + 𝛼𝑒 (
𝑧𝑒

𝐶𝐴𝑃𝑒
)

𝛽𝑒

                                                                                                            (18) 

where 𝑤𝑒 is the link travel time, 𝑡𝑓 is the link free-flow travel time, 𝑧𝑒 is the vehicle volume on 

link 𝑒 and 𝐶𝐴𝑃𝑒  is the road link capacity. 𝛼𝑒 and 𝛽𝑒 are parameters for the model and can be 

estimated through historical traffic data. Then the link travel time derivative 
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘
 based on 

equation (18) can be written as follows: 

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘
=  

𝛼𝑒𝑝,𝑛𝑝
𝛽𝑒𝑝,𝑛𝑝

𝑡𝑓𝑧̂𝑝,𝑛𝑝,𝑘

𝛽𝑒𝑝,𝑛𝑝
−1

𝐶𝐴𝑃𝑒𝑝,𝑛𝑝

 ≡ 𝐵𝑝,𝑛𝑝,𝑘𝑧̂𝑝,𝑛𝑝,𝑘

𝛽𝑒𝑝,𝑛𝑝
−1

                                                       (19) 

After the derivation, the final form of marginal cost is: 

𝑀𝐶𝑃
𝑙′,𝑘′
𝑝′,𝑢′

=  𝑐
𝑙′,𝑘′
𝑝′,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

 

                       + 𝜂 ∑ ∑ ∑ ∑
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

+  ∑ ∑ ∑ ∑
𝜕ℎ𝑢(𝑣𝑝,𝑛𝑝,𝑘)

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

𝑑𝑝,𝑛𝑝
𝑦𝑙,𝑘

𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾
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                  =  𝑐
𝑙′,𝑘′
𝑝′,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

+ ∑ ∑ ∑ ∑ (𝜂 +
𝜕ℎ𝑢(𝑣𝑝,𝑛𝑝,𝑘)

𝜕𝑤̂𝑝,𝑛𝑝,𝑘
𝑑𝑝,𝑛𝑝

)
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′ ,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

  

                  ≈  𝑐
𝑙′,𝑘′
𝑝′,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

+  ∑ ∑ ∑ ∑ 1𝑒𝑝,𝑛𝑝
′ ,𝜉

𝑘′,𝑒𝑝,𝑛𝑝
′

(𝑒𝑝,𝑛𝑝
, 𝜉𝑘,𝑒𝑝,𝑛𝑝

)

𝑁𝑝

𝑛𝑝=1𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

 

                        ⋅ 𝑦𝑙,𝑘
𝑝,𝑢 1

𝑣𝑝,𝑛𝑝,𝑘∆𝑡
(𝜂 +

𝜕ℎ𝑢 (𝑣𝑝,𝑛𝑝,𝑘)

𝜕𝑤̂𝑝,𝑛𝑝,𝑘
𝑑𝑝,𝑛𝑝

) 𝐵𝑝,𝑛𝑝,𝑘𝑧̂𝑝,𝑛𝑝,𝑘

𝛽𝑒𝑝,𝑛𝑝
−1

                   (20) 

Since the first and second terms are decomposable with respect to the links, the marginal costs 
of the paths belonging to the same segment will be placed in equilibrium by running a dynamic 

assignment algorithm. Then the marginal cost for a segment 𝑀𝐶𝑙′,𝑘′
𝑢′

 is approximated by its 

marginal cost of path 𝑀𝐶𝑃
𝑙′,𝑘′
𝑝′,𝑢′

. The calculation of the marginal cost of a segment requires the 

knowledge of  the propagation of other segments 1𝑒𝑝,𝑛𝑝
′ ,𝜉

𝑘′,𝑒𝑝,𝑛𝑝
′

(𝑒𝑝,𝑛𝑝
, 𝜉𝑘,𝑒𝑝,𝑛𝑝

), the basic traffic 

network status (𝑤̂𝑝,𝑛𝑝,𝑘, 𝑧̂𝑝,𝑛𝑝,𝑘, 𝑣𝑝,𝑛𝑝,𝑘, ℎ𝑢 (𝑣𝑝,𝑛𝑝,𝑘)), as well as the aggregated segment-level 

information (𝑐
𝑙′,𝑘′
𝑝′,𝑢′

 , 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

, 𝑦𝑙,𝑘
𝑝,𝑢 ) from the simulator. With the marginal cost of each segment 

updated, route collections are updated by checking whether there are new lower marginal cost 
routes. Then the route flow vector 𝑋 is updated to move along the descent direction with the 
step size described in the previous subsection with the knowledge of the updated marginal 
cost. The algorithm stops when no more improvement on the total cost can be gained. 

2.4.2 Emission models 
      The emissions from the whole assignment and routing procedure are estimated using  the  
EPA model MOVES and include 𝐻𝐶, 𝐶𝑂, 𝑁𝑂𝑋, 𝐶𝑂2, 𝑃𝑀25 [66].  

2.5 Scalability 
The computational complexity of the method comes from two aspects: the number of 
iterations and the computation in each step. In each step, each route in the route collection is 
examined. The iteration number is also related to the combinations of dividing demands onto 
the routes in each route collection. So with the increasing of road network, the routes found for 
each pair of O/D are increased exponentially and the computation power allocated increases 
exponentially as well. To deal with the computational complexity induced by the expansion of 
road network, we introduced a distributed version of our co-simulation load balancing 
optimization approach. In the distributed version, the road network is divided into several 
subnetworks. For each subnetwork, a service subnetwork is constituted as in the original 
method. Then we join all the service subnetwork (joining service subnetwork) according to the 
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boundary service nodes into one network and constitute a service network for it. The 
interactions between service network and joining  service subnetwork are similar as in the 
service network and road network. Then the demands are first assigned based on the 
optimization in the service network onto each service subnetwork. From each service 
subnetwork, the demand is assigned onto the road level. Opposite of the direction of demand, 
the updates of traffic status are performed from the road subnetwork to service subnetwork, 
then to the service network. The structure of it is shown in Fig 3. 

Figure 3: Structure of distributed load balancing co-simulation optimization method 

 

The performance of different partitioning settings of the distributed load balancing co-simulation 
method will be presented in the numerical subsection including the number of demands, the 
number of boundary nodes and the number of subnetworks. 

2.6 Numerical results 
This section presents the evaluation of the proposed approach using a regional transportation 
network which covers the Los Angeles/Long Beach terminal port area from the south to I 105 
freeway in the north and a large road network covers approximately the area of  Los Angeles 
Metropolitan Area. Lane characteristics such as length, capacity, speed limit et al. are 
incorporated in the network. The freight vehicles from and to the terminal port area account 
for a large amount of traffic around the area and has a great impact on the environment. The 
background traffic is expressed as the number of trips between nodes that are origins and 
destinations. The historical freeway traffic flow data are obtained from PeMS [63] and Google 
Maps [64]. The raw traffic data are processed (formatted/truncated/aggregated) to fit the 
format of the traffic simulator. The  traffic conditions used in the numerical evaluation are: off-
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peak (2am to 6am), medium (12pm to 4pm), peak (7am to 11am). We assume that each truck 
can only load one container and the demand is considered to be fulfilled by a single-direction 
route. The service network nodes are composed of O/D nodes as well as intersections of 
freeways and major arterial ways. The service nodes also play roles of charging stations. To 
make sure the routes of electric trucks are feasible, we assume every charging station has 
enough capacity for charging and electric trucks always get charged the amount of electricity 
they consumed on the previous segment along the route. The length of each interval is 30 
minutes.  

2.6.1 On mixed freight load balancing co-simulation optimization method 

performance 
To show the benefits of applying load balancing co-simulation optimization assignment, we 
compared the proposed approach against a mixed freight assignment system without 
optimized load balancing or co-simulation. The non-optimized-load-balancing system assumes 
that for each pair of O/Ds, given the cost of each route between the O/D, a diesel/electric truck 
always chooses the minimal cost route. The non-co-simulation cases assume that the dynamics 
of traffic status are updated with historical average traffic data, not with the traffic simulator. In 
the comparison, we will show that in these two cases, the missing of optimized load balancing 
or co-simulation data will have inaccurate information of the traffic status for the decision of 
the assignment so that at the end the assignment quality is worse than the one with optimized 
load balancing and co-simulation. Because in the case of optimized load balancing co-
simulation system, the changes of traffic flow characteristics on a certain route as well as the 
reactions of background traffic will be reflected in the marginal cost so that the freight vehicles 
assigned on this route may be shifted to another route with lower marginal cost. In this way, 
the total cost of the assignment of mixed freight can be reduced. The comparison is shown in 
Figure 4. The system with load balancing achieves the lowest total cost. The average savings by 
applying optimized load balancing with co -simulation versus non-optimized-load-balancing but 
co-simulation is 24.8% and around 15% for the case of optimized load balancing based on 
historical data rather than the dynamic co-simulator.  
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Figure 4: Comparison with cases without optimized load balancing or co-simulation 

 

We next test the system under different scenarios of various percentages of electric vehicles. 
The experimental scenarios are constructed in the following manner: under each traffic 
condition (light, medium, heavy), the percentage of electric vehicles in the fleet is varied from 0 
% to 100 % in increments of 10 %. The results include total costs in US dollars of the assignment 
(with and without charging time cost), the weight in unit of gram of several emissions (CO, NOX, 
CO2, PM25) as well as fuel consumed in unit of kg. The emissions are calculated by the  
modified EPA model  MOVES [66] with speed as input and emissions in units of g/mile as 
output. The results under light, medium and heavy traffic conditions are shown in Figure 5, 6, 7. 
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Figure 5: Results under light traffic condition 

 

Figure 6: Results under medium condition 
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Figure 7: Results under heavy traffic condition 

 

The above  results lead to the following conclusions: 

• The total energy cost without including charging cost decreases as the number of 
electric vehicles increases. However, this does not imply that for a specific route the use 
of electric vehicle is less costly than that of a diesel vehicle due to the complex influence 
from the surrounding traffic flow. 

• The total cost that also includes the charging cost tends to increase in general with 
increasing number of electric vehicles in the fleet. The assumption made is that the 
charging cost includes the labor cost of the driver waiting for the vehicle to charge. If 
charging is done off-duty this cost can be reduced considerably. 

• As expected the emissions go down drastically as the number of electric vehicles 
increases in the fleet. 

2.6.2 On distributed optimized load balancing co-simulation method 
In this subsection, we examine different aspects that affect the performance of distributed 
optimized load balancing co-simulation methods. We use two different road networks: the Long 
Beach network and the Los Angeles Metropolitan area network which is much larger.  

For the Long Beach network, we first examine the performance under different number of 
subnetworks. The results are  shown in Table V.  
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Table V: Results on number of subnetworks for distributed Long Beach network 

# of Subnetworks 0 2 3 4 

Total Cost (𝑪𝟏 = $𝟑𝟒𝟐𝟏𝟖𝟗) 𝐶1 1.053𝐶1 1.091𝐶1 1.147𝐶1 

Computation Time (second) 𝑇1 0.742𝑇1 0.647𝑇1 0.815𝑇1 

 

where 𝑇1 = 4792 s. The first raw in the table shows the number of subnetworks. The case 0 
corresponds to the centralized load balancing approach that produces a total cost C1. When we 
divide the network into 2 and use the distributed approach the total cost increases by a factor 
of 1.053 which is about 5% whereas the computational time is reduced significantly by about 
26%. When the number of subnetworks is 3 the cost is increased by about 9.1% whereas the 
computational time is reduced by about 35%. In the case of 4 subnetworks the cost is increased 
by 14.7% and the computational time is reduced by 18%. The results indicate that the benefits 
in computational time reduction is much higher than the additional cost increase as long as the 
number of subnetworks is not too high. Large number of subnetworks will increase the 
computational time associated with the interactions between assignment flows between 
subnetworks which may outweigh the computational time saved by the decomposition.  

We now proceed to check if the same conclusion can be made if we change the number of 
demands. Table VI presents the results. 

Table VI: Results on number of demands for distributed Long Beach network 

Demands # of Subnetworks 0 2 3 4 

# of demands = 3514 Total Cost 𝐶1 1.053𝐶1 1.091𝐶1 1.147𝐶1 

Computation Time (second) 𝑇1 0.742𝑇1 0.647𝑇1 0.815𝑇1 

# of demands = 7028 Total Cost 𝐶2 1.059𝐶2 1.096𝐶2 1.151𝐶2 

Computation Time (second) 𝑇2 0.784𝑇2 0.664𝑇2 0.827𝑇2 

# of demands = 14056 Total Cost 𝐶3 1.073𝐶3 1.117𝐶3 1.194𝐶3 

Computation Time (second) 𝑇3 0.806𝑇3 0.675𝑇3 0.862𝑇3 
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where 𝑐1 = $342189.00, 𝑐2 = $728162.00, 𝑐3 = $1708326.00,  𝑇1 = 4792 𝑠, 𝑇2  =
 5238 𝑠 , 𝑇3 =  7965 𝑠. With doubling and quadrupling the demand, we can see similar pattern 
with respect to optimality and computation time for the Long Beach network. 

We then check the performance of distributed optimized load balancing co-simulation method 
under different number of boundary nodes. Table VII shows the results.  

Table VII: Results on number of boundary nodes for distributed Long Beach network 

# of demands = 3514 

# of subnetworks = 2 

# of Boundary Nodes 5 6 7 

Total Cost 1.024𝐶 1.012𝐶 𝐶 

Computation Time 

(second) 

𝑇 1.037𝑇 1.083𝑇 

where 𝐶 = $355880.00, 𝑇 =   3558 𝑠. We observe that with the increase of the number of 
boundary nodes, we gain benefits on total cost (better assignment), while lose some 
computation time.  

For the Los Angeles Metropolitan network, we check if the performance under different 
number of subnetworks is similar to that in Long Beach network and if the pattern remains 
under different number of demands. The results are shown in Table VIII. 

Table VIII: Results on number of subnetworks for distributed LA Metropolitan network 

Demands # of Subnetworks 3 4 5 

# of demands = 13600 Total Cost 𝐶4 1.096𝐶4 1.155𝐶4 

Computation Time 

(second) 

1.648𝑇4 1.217𝑇4 𝑇4 

# of demands = 27200 Total Cost 𝐶5 1.114𝐶5 1.189𝐶5 

Computation Time 

(second) 

1.918𝑇5 1.39𝑇5 𝑇5 

The results  share the similarities with those from Long Beach network, which is by dividing 
networks more, we gain much more benefits on the computation time than loss on the 
assignment optimality. 

In a summary, the conclusions for this subsection are: 

• The scalability issue can be solved by using distributed load balancing method. 
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• The distributed optimized load balancing co-simulation method is tested and validated 
under two networks: Long Beach network and large Los Angeles metropolitan network. 

• For Long Beach network, the distributed load balancing is tested based on different 
number of subnetworks, demands and boundary nodes. By increasing the number of 
boundary nodes, we can achieve better assignment with more computational time. By 
increasing the number of subnetworks, we can achieve a large reduction in 
computational time with a relatively small loss on the optimality. However, a proper 
decomposition is needed since if the network is decomposed too much, the interactions 
between subnetworks will compromise the computational time gained from 
decomposition. 

• For the large metropolitan network, similar relation between performance and number 
of subnetworks is revealed. 

2.6.3 On incorporated platooning optimized load balancing co-simulation 
By assuming that platoons of trucks are allowed in the assignment decision, we introduce 
different functions of energy savings as well as merging and splitting time into the origin 
optimized load balancing co-simulation method. The first case is stated in [67], where the 
following truck will save 21% energy consumption relative to the truck it follows and we 
assume the emerging and splitting time for each truck are both 2 minutes. The test is 
performed in Long Beach network with 3 subnetworks and 3514 demands. The results show 
that by allowing platooning, the total cost can further be reduced by 6.4%. The second case is 
from [51], where the energy consumption savings are 4.3%, 10%, 14% for the first, second and 
third truck in the platoon. The merging time is 25 seconds and the splitting time is 35 seconds. 
Under the same network setting, it achieves 5.3% total cost saving. From the observation, we 
can see that part of the savings on energy consumption from the introduction of truck platoons 
is compromised by the merging and splitting time. However, if platoons are used for long 
distance routes such as on regional and/or continental networks, the time spent on emerging 
and splitting may be very small relative to the overall travel time along the route and the 
advantage of energy savings can be maximized under such condition. Further efforts such as 
introducing regional virtual links to represent the route in low density road network can be 
made to accommodate questions regarding network density and length of trip. 

3. Conclusions 
In this project, we have proposed a mixed fleet freight centrally coordinated dynamic routing 
system based on a multi-layer co-simulation optimization method to achieve freight load 
balance across the road network. The interactions with background traffic have been 
considered in the problem and as well as inclusions of electric trucks with their penetration 
varying from 0% to 100%. The electric trucks have additional constraints that include limited 
range, longer refueling (charging) times and in addition the depletion rate of the battery life 
depends on traffic conditions. These characteristics introduce additional constraints that need 
to be taken into account in finding optimum routes that lead to freight load balance across the 
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road network. We have solved the problem by using a multi-layer optimization method; one 
layer for the traffic simulator to accurately predict the states of the transportation system and 
another layer of service network to generate the optimum routes. We also proposed a 
distributed variation of the method to address the computational complexity induced by the 
expansion of road network. Different techniques of truck platooning are incorporated with the 
method and tested. Realistic traffic networks including the Los Angeles/Long Beach network 
that includes the two ports and the larger Los Angeles Metropolitan network have been used to 
evaluate the approach and the impact of electric trucks in a mixed fleet. The system shows 
24% savings over one without optimized load balancing and 15% savings over one without co-
simulation. Another result reveals that although the use of electric trucks can notably reduce 
the emissions, the charging time cost makes the operational cost of electric trucks comparable 
or higher than diesel trucks. It is assumed that charging is done during working hours and 
includes the driver cost. One way to make the operational cost of electric trucks lower than 
those of diesel trucks is to schedule charging during driver off hours or during times that the 
driver is idle for job purposes. The results on the performance of distributed optimized load 
balancing co-simulation reveal the trade-offs between computation time and assignment 
optimality with respect to the  number of subnetworks, boundary nodes and demands. The use 
of truck platoons may have benefits whose level depends on the distance travelled by the 
platoons as merging and exiting the platoon may take away some of the benefits. 
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DISCLAIMER STATEMENT 
 

This document is disseminated in the interest of information exchange. The contents of 
this report reflect the views of the authors who are responsible for the facts and accuracy 
of the data presented herein. The contents do not necessarily reflect the official views or 
policies of the State of California or the Federal Highway Administration. This publication 
does not constitute a standard, specification or regulation. This report does not constitute 
an endorsement by the Department of any product described herein. 
 
For individuals with sensory disabilities, this document is available in alternate formats. 
For information, call (916) 654-8899, TTY 711, or write to California Department of 
Transportation, Division of Research, Innovation and System Information, MS-83, P.O. 
Box 942873, Sacramento, CA 94273-0001. 
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Data Management Plan 
Products of Research  
The traffic flow data from Caltrans Performance Measurement System (PeMS) were collected 
for the study. 
Data Format and Content  
Data is in the format of zip file and includes following traffic information: timestamp, sensing 
station identifier, direction of travel, lane type, station length, total flow, average speed 
Data Access and Sharing  
The general public can access the data through website https://pems.dot.ca.gov/. 
 
Reuse and Redistribution  
The data can be reused and redistributed by the general public through website 
https://pems.dot.ca.gov/.  
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